
 1

Tutorial 10 (SOLUTIONS)
NOTE THAT THERE ARE MANY OTHER POSSIBLE SOLUTIONS TOO…

SS1

 1) State Transition Diagram

2) Next State Table

Current State Inputs Next State

S IN S+

S0 0 S1

S0 1 S2

S1 X S2

S2 X S0

By using two bits to represent the state, S1S0 :

State Assignment

 S1 S0

S0 0 0

S1 0 1

S2 1 0

S3 1 1

The next state after S3 has been set to S0 instead of

don’t cares. This is a minimum-risk design choice

because there is no external reset signal to this FSM.

Current State Inputs Next State

S1 S0 IN S1+ S0+

0 0 0 0 1

0 0 1 1 0

0 1 X 1 0

1 0 X 0 0

1 1 X 0 0

A two bit counter can be designed

using D Flip-flops for the state

memory :

01111 SSINSSD  
 0100 SSINSD  

0 1

IN

S
1 S

0

0

0 0

1 0

0

0 0

00

01

11

10

0 1

IN

S
1 S

0

1

0 0

0 1

1

0 0

00

01

11

10

 2

3) Output Logic Table

Current State Outputs

S OUT1 OUT2

S0 0 0

S1 1 0

S2 0 1

Current State Outputs

S1 S0 OUT1 OUT2

0 0 0 0

0 1 1 0

1 0 0 1

1 1 X X

01220111 , QQSOUTQQSOUT 

4) Circuit Implementation

Notice that this is a Moore machine as the outputs (OUT1, OUT2) are a function of the

current state (Q1, Q0) only.

 3

SS2

 1) State Transition Diagram

2) Next State Table

Current State Inputs Next State

S I1 I2 S+

SA 0 X SB

SA 1 X SC

SB 0 0 SA

SB 0 1 SD

SB 1 X SB

SC X X SA

SD X X SB

You can arrange the next state table

like a KMAP to save yourself one step!

A two bit counter can be designed

using D Flip-flops for the state

memory.

 I1, I2

00 01 11 10

SA SB SB SC SC

SB SA SD SB SB

SD SB SB SB SB

SC SA SA SA SA

Applying the following

State Assignment

 Q1 Q0

SA 0 0

SB 0 1

SC 1 0

SD 1 1

210110111 IIQQIQQQD  

1020

0110100

IQIQ

QQIQQQD



 

1

00 01 11 10

I
1 I 2

Q
1 Q

0

1

0

0 0 0 0

0 0

1 0 0

0 0 0 0

00

01

11

10

0

00 01 11 10

I
1 I 2

Q
1 Q

0

0

0

0 0 0 0

1 1

1 1 1

1 1 1 1

00

01

11

10

 4

3) Output Logic Table

Current State Outputs

S OUT1 OUT2

SA 1 I1

SB I1 1

SC 0 0

SD 0 0

By inspection,

110110101

1.1

IQQQIQQQQ

ISBSAOUT





110101101

1.2

IQQQQQIQQ

ISASBOUT





Current State Inputs Outputs

Q1Q0 I1 OUT1 OUT2

00 0 1 0

00 1 1 1

01 0 0 1

01 1 1 1

10 X 0 0

11 X 0 0

Solving (KMAP),

𝑂𝑈𝑇1 = 𝑄1̅̅ ̅. 𝑄0̅̅̅̅ + 𝑄1̅̅ ̅. 𝐼1

𝑂𝑈𝑇2 = 𝑄1̅̅ ̅. 𝑄0 + 𝑄1̅̅ ̅. 𝐼1

4) Circuit Implementation

As the outputs, OUT1 and OUT2, are a function of both current state (Q1, Q0) as well as the

current inputs (I1, I2), this is a Mealy machine.

I 2 Q 1

Q 0

Q 1

Q 0

Q

Q

D

Q

Q

D

CLK

D 1

D 0

I 1

I 2 I 1

OUT1

OUT2

 5

Question 1
Selecting a clock period of 10 seconds, the snooze can be implemented by having 1 state of
alarm (10 seconds) followed by 6 states of waiting (60 seconds).

Solution 1 :

Overall Block Diagram:

Alarm Clock FSM :

Solution 2 :

Modular FSM Block Diagram:

Pause FSM

Alarm Clock FSM

 6

Verilog Code (For Reference Only)
// This is a Verilog realization of the Alarm Clock state machine

module alarm_clock (input clk, ring, reset, output alarm);

reg [1:0] state = 2’b00; reg [1:0] nextstate = 2’b00;

// A temporary register is used to keep count of 1 minute

reg [2:0] count=3'b000;

wire done;

// wait is a Verilog reserved word and shouldn't be used as a state name

parameter WAITING = 2’b00, ALARM = 2’b01, PAUSE = 2’b10;

//Next State Logic

always @ (*) begin

 case (state)

WAITING : nextstate = ring ? ALARM : WAITING;

ALARM : nextstate = reset ? WAITING : PAUSE;

PAUSE : if (reset) nextstate = WAITING;

else if (done) nextstate = ALARM;

default : nextstate = WAITING;

 endcase

end

//State Memory (2 x D Flip-flops)

always @(posedge clk) begin

 state <= nextstate;

end

//Output Logic

assign alarm = (state == ALARM);

assign clear = (state == WAITING) || (state == ALARM);

//Mod-6 counter for Sleep FSM

always @(posedge clk) begin

 if (clear) count <= 0;

 else begin

 if (count == 3'b101) begin

 count <= 0;

end

else begin

 count <= count +1;

end

 end

end

assign done = count[2] & count[0];

endmodule

Verilog Simulation Results

7

Question 2

Overall Block Diagram : Modular FSM Block Diagram:

START = CLEAR & DONE = END

By reusing the START signal as the CLEAR signal,
and the DONE signal as the END signal, we save
two signals.

Find_Ones FSM :

 8

Verilog Code (For Reference Only)

module find_ones(input clk, start, data, output done, output [2:0] X);

reg [3:0] state = 4'b1000; reg [3:0] nextstate = 0;

// A temporary register is used to keep count of 7 cycles.

reg [2:0] count = 3'b000;

parameter WAITING = 4'b1000, ZERO = 4'b0000, ONE = 4'b0001, TWO = 4'b0010,

THREE = 4'b0011, FOUR = 4'b0100, FIVE = 4'b0101, SIX = 4'b0110, SEVEN =

4'b0111;

//Next State Logic

always @ (*) begin

 case (state)

 WAITING: nextstate = start ? (data ? ONE : ZERO) : WAITING;

 ZERO: nextstate = done ? WAITING: (data ? ONE : ZERO);

 ONE: nextstate = done ? WAITING: (data ? TWO : ONE);

 TWO: nextstate = done ? WAITING: (data ? THREE : TWO);

 THREE: nextstate = done ? WAITING: (data ? FOUR : THREE);

 FOUR: nextstate = done ? WAITING: (data ? FIVE : FOUR);

 FIVE: nextstate = done ? WAITING: (data ? SIX : FIVE);

 SIX: nextstate = done ? WAITING: (data ? SEVEN : SIX);

 SEVEN: nextstate = done ? WAITING: SEVEN;

 default : nextstate = WAITING;

 endcase

end

//State Memory

always @ (posedge clk) begin

state <= nextstate;

end

//Output Logic

assign X = state[2:0];

//Mod-7 counter

always @(posedge clk) begin

 if (start) count <= 0;

 else begin

 if (count == 3'b110)

 count <= 0;

 else

 count <= count +1;

 end

end

assign done = count[2] & count[1];

endmodule

Verilog Simulation Results

 9

Question 3

Overall Block Diagram :

State Transition Diagram of PPL_COUNTER FSM :

Verilog Code (For Reference Only)

module PPL_CNT (input clk, enter, leave, output full, empty);
reg [1:0] state, nextstate;

parameter ZERO = 2’b00, ONE = 2’b01, TWO = 2’b10; THREE = 2’b11;

always @ (*) begin

 case (state)

 ZERO: nextstate = enter ? ONE : ZERO;

 ONE: nextstate = enter ? (leave ? : ONE : TWO)

: (leave ? : ZERO : ONE);

 TWO: nextstate = enter ? (leave ? : TWO : THREE)

: (leave ? : ONE : TWO);

 THREE: nextstate = leave ? TWO : THREE;

 default : nextstate = ZERO;

 endcase

end

always@(posedge clk)

 state <= nextstate;

assign empty = ((state == ZERO) & ~enter) | (state == ONE) & (~enter &

leave));

assign full = ((state == TWO) & (enter & ~leave)) | (state == THREE) &

~leave);

endmodule

